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Abstract

We propose to use the ensemble Kalman smoother (EnKS) as the linear least squares
solver in the Gauss–Newton method for the large nonlinear least squares in incre-
mental 4DVAR. The ensemble approach is naturally parallel over the ensemble mem-
bers and no tangent or adjoint operators are needed. Further, adding a regulariza-5

tion term results in replacing the Gauss–Newton method, which may diverge, by the
Levenberg–Marquardt method, which is known to be convergent. The regularization
is implemented efficiently as an additional observation in the EnKS. The method is
illustrated on the Lorenz 63 and the two-level quasi-geostrophic model problems.

1 Introduction10

Four dimensional variational data assimilation (4DVAR) is a dominant data assimilation
method used in weather forecasting centers worldwide. 4DVAR attempts to reconcile
model and data variationally, by solving a very large weighted nonlinear least squares
problem. The unknown is a vector of system states over discrete points in time, when
the data are given. The objective function minimized is the sum of the squares of the15

differences of the initial state from a known background state at the initial time and
the differences of the values of observation operator and the data at every given time
point. In the weak-constraint 4DVAR (Trémolet, 2007), considered here, the model error
is accounted for by allowing the ending and starting states of the model at every given
time point to be different, and adding to the objective function also the sums of the20

squares of those differences. The sums of the squares are weighted by the inverses of
the appropriate error covariance matrices, and much of the work in the applications of
4DVAR goes into modeling those covariance matrices.

In the incremental approach (Courtier et al., 1994), the nonlinear least squares prob-
lem is solved iteratively by using a succession of linear least square solutions. The25

major cost in 4DVAR iterations is in evaluating the model, tangent and adjoint opera-
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tors, and solving large linear least squares. A significant software development effort
is needed for the additional code to implement the tangent and adjoint operators to
the model and the observation operators. Straightforward linearization, called the in-
cremental approach (Courtier et al., 1994), leads to the Gauss–Newton method for
nonlinear least squares (Bell, 1994; Tshimanga et al., 2008). However, Gauss–Newton5

iterations may not converge, not even locally. Finally, while the evaluation of the model
operator is typically parallelized on modern computer architectures, there is a need to
further parallelize the 4DVAR process itself.

The Kalman filter is a sequential Bayesian estimation of the gaussian state of a linear
system at a sequence of discrete time points. At each of the time points, the use of the10

Bayes theorem results in an update of the state, represented by its mean and covari-
ance. The Kalman smoother considers all states at all time points from the beginning
to be a large composite state. Consequently, the Kalman smoother can be obtained
from the Kalman filter by simply applying the same update as in the filter to the past
states as well. However, historically, the focus was on efficient short recursions (Rauch15

et al., 1965; Strang and Borre, 1997), similar the sequential Kalman filter.
It is well known that weak constraint 4DVAR is equivalent to the Kalman smoother

in the linear case. To apply the Kalman smoother in the nonlinear case, the problem
needs to be linearized, leading to variants of the extended Kalman filter and the Gauss–
Newton method. Use of the Kalman smoother to solve the linear least squares in the20

Gauss–Newton method is known as the iterated Kalman smoother, and considerable
improvements can be obtained against running the Kalman smoother only once (Bell,
1994; Fisher et al., 2005).

The Kalman filter and smoother require maintaining the covariance of the state,
which is not feasible for large systems, such as in numerical weather prediction. Hence,25

the ensemble Kalman filter (EnKF) and ensemble Kalman smoother (EnKS) (Evensen,
2009) use a Monte-Carlo approach for large systems, representing the state by an
ensemble of simulations, and estimating the state covariance from the ensemble. The
implementation of the EnKS in Stroud et al. (2010) uses the adjoint model explicitly,

867

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 865–902, 2015

Hybrid Levenberg–
Marquardt and

weak-constraint
ensemble Kalman
smoother method

J. Mandel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with the short recursions and a forward and a backward pass, as in the KS. However,
the implementations in Khare et al. (2008); Evensen (2009) do not depend on the ad-
joint model and simply apply EnKF algorithms to the composite state over multiple time
points. We use the latter approach in the computations reported here.

In this paper, we propose to use the EnKS as a linear least squares solver in 4DVAR.5

The ensemble approach is naturally parallel over the ensemble members. The rest
of the computational work is relatively cheap compared to the ensemble of simula-
tions, and parallel dense linear algebra libraries can be used. The proposed approach
uses finite differences from the ensemble, and no tangent or adjoint operators are
needed. To stabilize the method and assure convergence, a Tikhonov regularization10

term is added to the linear least squares, and the Gauss–Newton method becomes
the Levenberg–Marquardt method. The Tikhonov regularization is implemented within
EnKS as a computationally cheap additional observation (Johns and Mandel, 2008).
We call the resulting method EnKS-4DVAR. Theoretical convergence of the algorithm
for large ensembles is studied in Bergou et al. (2014), where a rigorous proof is pro-15

vided that the iterations of the EnKS-4DVAR method converge to those of the incre-
mental 4DVAR for large ensembles in the Lp norm, for any p ∈ [1,∞), in the large
ensemble limit.

The EnKF has become a competitive method for data assimilation. Consequently,
combinations of ensemble and variational approaches have become of considerable20

recent interest. Estimating the background covariance for 4DVAR from an ensemble
was one of the first connections (Hamill and Snyder, 2000), and it is now standard
and became operational (Wang, 2010). Gradient methods in the span of the ensem-
ble for one analysis cycle (i.e., 3DVAR) include Zupanski (2005); Sakov et al. (2012)
(with square root EnKF as a linear solver in Newton method), and Bocquet and Sakov25

(2012), who added regularization and use LETKF-like approach to minimize the non-
linear objective function over linear combinations of the ensemble. Bocquet and Sakov
(2012) scale the ensemble to approximate the derivatives (tangent operators) as in
Sakov et al. (2012). They call their approach the “bundle variant”, which is the same
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as using finite differences to approximate derivatives. Here, we use a similar technique
to approximate the derivatives. Liu et al. (2008, 2009); Liu and Xiao (2013) also mini-
mize the (strong constraint) 4DVAR objective function over linear combinations of the
ensemble by computations in the observation space. Their method, called Ens4DVAR,
does not need tangent or adjoint operators also. Zhang et al. (2009) use a two-way con-5

nection between EnKF and 4DVAR, to obtain the covariance for 4DVAR, and 4DVAR to
feed the mean analysis into EnKF. EnKF is operational at the National Centers for Envi-
ronmental Prediction (NCEP) as part of its Global Forecast System Hybrid Variational
Ensemble Data Assimilation System (GDAS), together with the Gridpoint Statistical In-
terpolation (GSI) variational data assimilation system (Developmental Testbed Center,10

2015).
Additional work appeared after the first version of this paper was written (Mandel

et al., 2013). Bocquet and Sakov (2014) extend the method of Bocquet and Sakov
(2012) to 4DVAR and use finite difference approximations of the tangent operators,
similarly as in Sakov et al. (2012) and here. However, Bocquet and Sakov (2014) nest15

the minimization loop for the 4DVAR objective function inside a square root version of
the EnKS and minimize over the span of the ensemble, rather than nesting EnKS as
a linear solver inside the 4DVAR minimization loop over the full state space as here.
Their method is tied to the use of the sample covariance matrix of the state without
localization of the covariance and to strong-constraint 4DVAR. The implementation of20

the EnKS in the computations reported here also uses sample covariance, and, conse-
quently, the analysis ensemble consists of linear combinations of the forecast ensem-
ble. However, limiting the EnKF to linear combinations only does not allow common
approaches to localization (Sakov and Bertino, 2011).

The present approach is not tied to the use of sample covariance. Rather, it allows an25

arbitrary implementation of the EnKS to be used, which makes localization possible,
e.g., by tapering the sample covariance (Furrer and Bengtsson, 2007) or replacing
the sample covariance by its diagonal in a spectral space (Kasanický et al., 2015).
Implementations of the EnKS with localization exist, e.g., Butala (2012), which is based
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on the Bryson–Frazier version of the classical formulation the KS, with a forward and
a backward pass. Ensemble methods for the solution of the 4DVAR nonlinear least
squares problem in the weak constraint 4DVAR, or ensemble methods for this problem
which allow localization, do not seem to have been developed before.

The paper is organized as follows. In Sect. 2, we review the formulation of 4DVAR.5

The EnKS for the incremental linearized squares problem is reviewed in Sect. 3. The
new method without tangent operators is introduced in Sect. 4. The modifications for
the regularization and the Levenberg–Marquardt method are presented in Sect. 5. Sec-
tion 6 contains the results of the computational experiments, and Sect. 7 is the conclu-
sion.10

2 Incremental 4DVAR and the Gauss–Newton method

We want to estimate x0, . . .,xk , where xi is the state at time i , from the background
state, x0 ≈ xb, the model, xi ≈Mi

(
xi−1

)
, and the observations Hi (xi ) ≈ yi , whereMi

is the model operator, and Hi is the observation operator. Quantifying the uncertainty
by covariances, with x0 ≈ xb taken as (x0 −xb)TB−1 (x0 −xb) ≈ 0, etc., we get the non-15

linear least squares problem

‖x0 −xb‖
2
B−1 +

k∑
i=1

∥∥xi −Mi
(
xi−1

)∥∥2
Q−1
i
+

k∑
i=1

‖yi −Hi (xi )‖
2
R−1
i

→minx0:k
, (1)

called weak-constraint 4DVAR (Trémolet, 2007). Originally, in 4DVAR, xi =Mi
(
xi−1

)
;

the weak constraint xi ≈Mi
(
xi−1

)
accounts for model error.

The least squares problem (Eq. 1) is solved iteratively by linearization,20

Mi
(
xi−1 +δxi−1

)
≈Mi

(
xi−1

)
+M′i

(
xi−1

)
δxi−1,

Hi (xi +δxi ) ≈Hi (xi )+H′i (xi )δxi .
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For vectors ui , i = 1, . . .,k, denote the composite (column) vector

u0:k =

 u0
...
uk

 .

In each iteration x0:k ← x0:k+δx0:k , one solves the auxiliary linear least squares prob-
lem for the increments δx0:k ,

‖x0 +δx0 −xb‖
2
B−1 +

k∑
i=1

∥∥xi +δxi −Mi
(
xi−1

)
−M′i

(
xi−1

)
δxi−1

∥∥2
Q−1
i

5

+
k∑
i=1

∥∥yi −Hi (xi )−H′i (xi )δxi∥∥2
R−1
i
→minδx0:k

. (2)

This is the Gauss–Newton method (Bell, 1994; Tshimanga et al., 2008) for nonlinear
squares, known in 4DVAR as the incremental approach (Courtier et al., 1994). Denote

z0:k = δx0:k , zb = xb −x0, mi =Mi
(
xi−1

)
−xi , d i = yi −Hi (xi ) , (3)

Mi =M′i
(
xi−1

)
, Hi =H′i (xi ) ,10

and write the auxiliary linear least squares problem (Eq. 2) as

‖z0 −zb‖
2
B−1 +

k∑
i=1

‖zi −Mizi−1 −mi‖
2
Q−1
i

+
k∑
i=1

‖d i −Hizi‖
2
R−1
i

→minz0:k
(4)

The function minimized in Eq. (4) is the same as the one minimized in the Kalman
smoother (Bell, 1994). The Gauss–Newton method with the Kalman smoother as the
linear least squares solver is known as the iterated Kalman smoother, and considerable15

improvements can be obtained against running the Kalman smoother, applied to the
linearized problem, only once (Bell, 1994; Fisher et al., 2005).
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3 Ensemble Kalman filter and smoother

We present the EnKF and EnKS algorithms, essentially following Evensen (2009), in
a form suitable for our purposes. We start with a formulation of the EnKF (Algorithm 1),
in a notation useful for the extension to EnKS. The notation v ` ∼ N (m,A) means that
v
` is sampled from N (m,A) independently of anything else. The ensemble of states5

of the linearized model at time i , conditioned on data up to time j (that is, with the

data up to time j already ingested), is denoted by ZNi |j =
[
z

1
i |j , . . .,z

N
i |j

]
=
[
z
`
i |j

]
, where

the ensemble member index ` always runs over ` = 1, . . .,N, and similarly for other
ensembles. Assume for the moment that the observation operator Hi is linear, that is,
Hi (u) = Hiu.10

Algorithm 1 EnKF

Initialize z`0|0 ∼ N (zb,B) , ` = 1, . . .,N
For i = 1, . . .,k, advance in time

z`
i |i−1

=Mi (z
`
i−1|i−1

)+ v `i , v `i ∼ N (0,Qi ) , (5)

followed by the analysis step

z`
i |i = z

`
i |i−1
−PNi HT

i (HiP
N
i HT

i +Ri )
−1(Hi (z

`
i |i−1

)−d i −w `
i ), w `

i ∼ N (0,Ri ) , (6)

where PNi is the sample covariance computed from the the ensemble ZNi |i−1.

We write the matrices in Eq. (6) as

PNi HT
i =

1
N −1

A(HiA)T, HiP
N
i HT

i =
1

N −1
HiA(HiA)T, (7)
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where A is the matrix of anomalies of the ensemble ZNi |i−1,

A =
[
a1, . . .,aN

]
=
[
z1
i |i−1
−zi |i−1, . . .,zN

i |i−1
−zi |i−1

]
, zi |i−1 =

1
N

N∑
j=1

zi |i−1. (8)

In particular, Hi is used here only in the matrix-vector multiplications

Hia
` = Hi

(
z`
i |i−1
−zi |i−1

)
= Hiz

`
i |i−1
− 1
N

N∑
j=1

Hiz
j
i |i−1

. (9)

Equation (9) allows the use of a nonlinear observation operator Hi , which only needs5

to be evaluated on the members of the ensemble. This technique is commonly used for
nonlinear observation operators, e.g., Chen and Snyder (2007); Mandel et al. (2009).
The replacement of Hi by Hi in Eq. (6) is straightforward.

From Eq. (7), it follows that the analysis ensemble ZNi |i consists of linear combinations
of the forecast ensemble, which can be written as multiplying the forecast ensemble by10

a suitable transformation matrix TNi ,

ZN
i |i = ZN

i |i−1
TNi , TNi ∈R

N×N . (10)

The EnKS is obtained by applying the same analysis step (Eq. 6) as in the EnKF to
the ensemble Z0:i |i−1 of composite states from time 0 to i , conditioned on data up to
time i −1,15

ZN
0:i |i−1

=


ZN0|i−1

...
ZNi |i−1

 ,
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in the place of Zi |i−1, with the observation matrix H̃0:i = [0, . . .,Hi ]. Then, Eq. (6) be-
comes

z`
0:i |i = x

N
0:i |i−1

−PN0:i ,0:i H̃
T
0:i (H̃0:iP0:i ,0:i H̃

T
0:i +Ri )

−1(H̃0:iz
`
0:i |i−1

−d`i −w
`
i ),

where PN0:i ,0:i is the sample covariance matrix of ZN0:i |i−1. Fortunately, the matrix–vector
and matrix–matrix products can be simplified,5

H̃0:iz
`
0:i |i−1

= [0, . . .,0,Hi ]z
`
0:i |i−1

= Hiz
`
i |i−1

(11)

PN0:i ,0:i H̃
T
0:i = PN0:i ,iH

T
i , H̃0:iP0:i ,0:i H̃

T
0:i = HiP

N
i ,iH

T
i , (12)

which gives the analysis step (Eq. 14) in the EnKS (Algorithm 2).

Algorithm 2 EnKS

Initialize z`0|0 ∼ N (zb,B) , ` = 1, . . .,N.
For i = 1, . . .,k, advance in time,

z`
i |i−1

= Miz
`
i−1|i−1

+mi + v
`
i , v `i ∼ N (0,Qi ) , (13)

followed by the analysis step

z`
0:i |i = x

N
0:i |i−1

−PN0:i ,iH
T
i (HiP

N
i ,iH

T
i +Ri )

−1(Hiz
`
0:i |i−1

−d`i ), d`i ∼ N (0,Ri ) , (14)

where H̃0:i = [0, . . .,Hi ], and PNi ,i is the sample covariance matrix of ZNi |i−1.

The EnKS can be implemented in a straightforward manner by applying the same
transformation as in the EnKF to the composite state from times 0 to i , ZN0:i |i =10

ZN0:i |i−1TNi , where TNi is the transformation matrix in Eq. (10) (Brusdal et al., 2003,
Eq. 20).
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4 Nonlinear EnKS-4DVAR method

The formulation of the auxiliary least squares problem (Eq. 2) relies on the linearized
(i.e., tangent) model operators Mi and Hi and their adjoints. The linearized model Mi =
M′i
(
xi−1

)
occurs only in advancing the time as action on the ensemble members δx` =

z
` ,5

Miz
`
i−1 +mi =M′i

(
xi−1

)
z`i−1 +Mi

(
xi−1

)
−xi

Approximating by finite differences based at xi−1 with step τ > 0, we get

Miz
`
i−1 +mi ≈

Mi

(
xi−1 + τz

`
i−1

)
−Mi

(
xi−1

)
τ

+Mi
(
xi−1

)
−xi . (15)

Thus, advancing the linearized model in time requires N +1 evaluations ofMi , at xi−1
and xi−1 + τδx

n
i−1. The observation matrix Hi occurs only in the action on the devi-10

ations of the ensemble of increments, Hi
(
z
`
i −zi

)
, zi =

1
N

∑N
j=1z

j
i . Approximating by

finite differences based at xi , with step τ > 0, we have in the multiplication (Eq. 7) of
the ensemble covariance,

Hi (z
`
i −z) ≈

Hi
(
xi + τz

`
i

)
−Hi (xi )

τ
− 1
N

N∑
j=1

Hi (xi + τz
j
i )−Hi (xi )
τ

(16)

Thus, evaluating the action of the linearized observation operator on the ensemble15

requires N+1 evaluations ofHi , at xi and xi+τz
`
i . We call the resulting method EnKS-

4DVAR (Algorithm 3).
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Algorithm 3 EnKS-4DVAR

First, initialize

x0 = xb, xi =Mi
(
xi−1

)
, i = 1, . . .,k,

if not given already. One iteration (Eq. 2) of the incremental 4DVAR is then imple-
mented as follows.
Given x0, . . .,xk , initialize z`0|0 ∼ N (zb,B) with zb = xb −x0.

For i = 1, . . .,k, advance z` in time following Eq. (13), with the linearized operator
approximated from Eq. (15),

z`
i |i−1

=
Mi

(
xi−1 + τz

`
i−1|i−1

)
−Mi

(
xi−1

)
τ

+Mi
(
xi−1

)
−xi + v `i , (17)

v
`
i ∼ N (0,Qi ), followed by the analysis step (Eq. 14), with the multiplication by the

matrix Hi approximated by linearizing the observation operator from Eq. (16).

For i = 1, . . .,k, update xi ←− xi + 1
N

N∑
`=1

z`
i |k .
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Algorithm 4 Nonlinear EnKS

Initialize xk0|0 ∼ N (xb,B).
For i = 1, . . .,k, advance in time

x`
i |i−1

=Mi

(
x`
i−1|i−1

)
+ v `i , v `i ∼ N (0,Qi ) (18)

followed by the analysis step

XN
0:i |i = XN

0:i |i−1
−AGT(GGT +Ri )

−1
[
Hi
(
x`
i |i−1

)
−yi −w `

i

]
`=1,N

, (19)

w`i ∼ N (0,Ri )

A =
[
a1, . . .,aN

]
, a`i = x

`
i |i−1
− 1
N

N∑
j=1

xi |i−1

G =
[
g1
i , . . .,g

N
i

]
, g`i =Hi

(
x`
i |i−1

)
− 1
N

N∑
j=1

Hi
(
x
j
i |i−1

)
(20)

Note that for small τ, the resulting method is asymptotically equivalent to the method
with the derivatives (Bergou et al., 2014). Surprisingly, it turns out that in the case when
τ = 1, we recover the standard EnKS applied directly to the nonlinear problems, that
is, with the linearized advance in time (Eq. 5) replaced by application of the original,
nonlinear operatorMi (Algorithm 4, obtained by outting together Eq. (12) with Eqs. (7)–5

(9). We write the nonlinear EnKS as operating on the original ensemble of the states

XN =
[
x
`
]N
`=1

rather than on the increments z` = δx` .) In particular, the incremental

4DVAR does not converge unless it is already at a stationary point, because each
iteration delivers the same result, up to the randomness of the EnKS.
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Theorem 1 If τ = 1, then one step of EnKS-4DVAR (Algorithm 3) becomes the non-
linear EnKS (Algorithm 4). In particular, in that case, the result of the step does not
depend on the previous iterate.

Proof. Indeed, Eq. (17) becomes

z`
i |i−1

=
Mi

(
xi−1 +z

`
i−1|i−1

)
−Mi

(
xi−1

)
1

+Mi
(
xi−1

)
−xi + v `i5

=Mi

(
xi−1 +z

`
i−1|i−1

)
−xi + v `i ,

hence, xi +z
`
i |i−1 =Mi

(
xi−1 +z

`
i−1|i−1

)
+ v `i , which is exactly the same as advanc-

ing the ensemble member ` following Eq. (18) with x`i−1|i−1 = xi−1 +z
`
i−1|i−1. Similarly,

Eq. (16) becomes with τ = 1,

a`i =
Hi
(
xi +z

`
i |i−1

)
−Hi (xi )

1
− 1
N

N∑
j=1

Hi
(
xi +z

j
i |i−1

)
−Hi (xi )

1
(21)10

=Hi
(
xi +z

`
i |i−1

)
− 1
N

N∑
j=1

Hi
(
xi +z

j
i |i−1

)
, (22)

which is exactly the same as Eq. (20) with x`i |i−1 = xi +z
`
i |i−1. Finally, the innovation

term in Eq. (14) becomes using Eq. (3),

Hiz
`
i |i−1
−d i =

Hi
(
xi +z

`
i |i−1

)
−Hi (xi )

1
− [yi −Hi (xi )] =Hi

(
x`
i |i−1

)
−yi ,

which is exactly the same as in Eq. (19). �15
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5 Tikhonov regularization and the Levenberg–Marquardt method

The Gauss–Newton method may diverge, but convergence to a stationary point of
(Eq. 1) can be recovered by a control of the step δx. Adding a constraint of the form
‖δxi‖ ≤ ε leads to globally convergent trust region methods (Gratton et al., 2013). Here,
we add δxi in a Tikhonov regularization term of the form γ‖δxi‖

2
S−1
i

, which controls5

the step size as well as rotates the step direction towards the steepest descent, and
obtain the Levenberg–Marquardt method (Levenberg, 1944; Marquardt, 1963) x0:k ←
x0:k +δx0:k , where

‖δx0 −zb‖
2
B−1 +

k∑
i=1

‖δxi −Miδxi−1 −mi‖
2
Q−1
i
+

k∑
i=1

‖d i −Hiδxi‖
2
R−1
i
+γ

k∑
i=0

‖δxi‖
2
S−1
i
→ min

δx0:k

(23)

Under suitable technical assumptions, the Levenberg–Marquardt method is guaran-10

teed to converge globally if the regularization parameter γ ≥ 0 is large enough (Gill
and Murray, 1978; Osborne, 1976). Estimates for the convergence of the Levenberg–
Marquardt method in the case when the linear system is solved only approximately
exist (Wright and Holt, 1985).

Similarly as in Johns and Mandel (2008), we interpret the regularization terms15

γ‖δxi‖
2
S−1
i

in Eq. (23) as arising from additional independent observations δxi ∼

N
(

0,γ−1Si
)

, which can be assimilated separately, resulting in a mathematically equiv-

alent but often more efficient two-stage method – simply run the EnKF analysis
(Eq. 6) twice. With the choice of Si as identity or, more generally a diagonal matrix,
the implementation of these large observations can be made efficient (Mandel et al.,20

2009).
Note that unlike in Johns and Mandel (2008), where the regularization was applied

to a nonlinear problem and thus the sequential data assimilation was only approximate,
here the EnKS is run on the auxiliary linearized problem (Eq. 23), so all distributions
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are gaussian and the equivalence of solving Eq. (23) at once and assimilating the
observations sequentially is statistically exact.

6 Computational results

In this section, we investigate the performance of EnKS-4DVAR method, described in
this paper, by solving the nonlinear least-squares problem (Eq. 1) in which the dynam-5

ical models are chosen either the Lorenz 63 system (Lorenz, 1963) or the two-level
quasi-geostrophic model (Fandry and Leslie, 1984).

We first consider experiments where the regularisation is not necessary to guarantee
the convergence (i.e., γ = 0). Lorenz 63 equations are used as a forecast model for
these experiments. Section 6.1 describes the Lorenz 63 model and presents numerical10

results on the convergence. Using the same model, in Sect. 6.2, we investigate the
impact of the finite differences parameter τ, used to approximate the derivatives of the
model and observation operators, along the iterations.

Experiments where the regularisation is necessary to guarantee the convergence
are shown in Sect. 6.3, and we analyse the impact of the regularisation parameter γ15

on the application to the two-level quasi-geostrophic model.
Note that for the experiments presented here, we do not use localization, hence we

choose large ensemble sizes. In all experiments, the regularization covariance Si = I.

6.1 Numerical experiments using Lorenz 63 model

The Lorenz 63 equations (Lorenz, 1963) are given by the nonlinear system20

dx
dt

= −σ(x− y),
dy
dt

= ρx− y −xz,
dz
dt

= xy −βz,

where x = x(t), y = y(t), z = z(t) and σ, ρ, β are parameters, whose values are cho-
sen as 10, 28 and 8/3 respectively for the experiments described in this paper. These
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values result in a chaotic behaviour with two regimes as illustrated in Fig. 1. This figure
shows the Lorenz attractor, which has two lobes connected near the origin, and the tra-
jectories of the system in this saddle region are particularly sensitive to perturbations.
Hence, slight perturbations can alter the subsequent path from one lobe to the other.

The system is discretized using the fourth-order Runge–Kutta method. The state at5

time t is denoted by Xt = [x(t),y(t),z(t)]>, Xt ∈R
3.

To evaluate the performance of EnKS-4DVAR method (Algorithm 3), we will test it
using the classical twin experiment technique, which consists on fixing an initial true
state, denoted by truth0, and then integrating the initial truth in time using the model to
obtain the true state truthi =M(truthi−1) at each time i . We then build the data yi by10

applying the observation operator Hi to the truth at time i and by adding a Gaussian
perturbation N(0,Ri ). Similarly, the background xb is sampled from the Gaussian dis-
tribution with the mean truth0 and the covariance matrix B. Then, we try to recover the
truth using the observations and the background.

We perform numerical experiments without model error. The initial truth is set to15

truth0 = [1,1,1]> and the background covariance is chosen as the identity matrix of or-
der three, i.e. B = I3. The model is advanced in time by using the Runge–Kutta method
with a time step of 0.1 time unit. The time window length is k = 50 time steps (5 time

units). The observation operator is defined as Hi (x,y ,z) =
(
x2,y2,z2

)
. At each time i ,

the observations are constructed as follows: yi =Hi (truthi )+ v i , where v i is sampled20

from N(0,R) with R = I3. Observations are taken for each time step (i = 1, . . .50). The
ensemble size is fixed to N = 100.

Figure 2 shows the estimator of the state vector X i , i = 1, . . .,10, for the first five
iterations of Algorithm 3. Figure 3 shows the root square error (RSE) for the same
iterates showm in Fig. 2. RSE is defined as25

RSE(j )
i =

√
1
n

(truthi −x
(j )
i )>(truthi −x

(j )
i ), j = 1, . . .,5, (24)
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where truthi is the true vector state at time i , x(j )
i is the j th iterate of Algorithm 3 at time

i and n is the length of xi . Table 1 shows the root mean square error (RMSE) for each
iterate given by

RMSE(j ) =
1
k

k∑
i=0

RSE(j )
i , j = 1, . . .,5, (25)

where k is the number of time steps.5

From Table 1 and Figs. 2 and 3, it can be seen that the iterates of Algorithm 3 con-
verge to the solution (without using a regularization). For these experiments, we ob-
serve that RMSE is reduced significantly in five iterations. Note that the error does not
converge to zero, because of the approximation and variability inherent in the ensemble
approach.10

6.2 The impact of the finite difference parameter

In this section, we investigate the influence of the finite differences parameter τ used to
approximate the derivatives of the model and observation operators. We use the same
experimental set-up as described in the previous section. The numerical results are
based on 30 runs of Algorithm 3 with eight iterations for Lorenz 63 problem, with the15

following choices for the parameter τ: 1, 10−1, 10−2, 10−3, 10−4, 10−5 and 10−6.
The mean of the objective function values are shown in Table 2. The box plots of the

objective function for the first four iterations are shown in Fig. 4 and for the last four
iterations are shown in Fig. 5.

These figures and table show the impact of the parameter τ on the objective func-20

tion minimization along the iterations. For τ = 1 (when we use the classical non linear
EnKS), the results are almost the same after the first iteration, in this case perform-
ing more iterations do not improve the results. However, when τ ≤ 10−1 the objective
function is decreasing along iterations. For τ = 10−1, more iterations are needed to re-
duce the objective function significantly. In the case of small values of τ, for instance25

882

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 865–902, 2015

Hybrid Levenberg–
Marquardt and

weak-constraint
ensemble Kalman
smoother method

J. Mandel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

τ ≤ 10−2, few iterations are enough to reduce the objective function significantly. When
τ = 10−3, the results are slightly different from the results with smaller values of τ.

As a conclusion for these experiments, it is better to choose τ ≤ 10−3, such that the
results will be less sensitive to the value of τ. Note that this value is problem dependent.
In practice, to avoid divergence due to the finite difference approximations, it is better to5

choose τ as small as possible, and since the computers use finite-precision arithmetic,
we need to be careful to the effects of computer rounding.

We can also observe that for the first iteration, the best decrease in objective function
is obtained when τ = 1, and the worst decrease is obtained for τ = 10−6. Moreover, for
the first four iterations the bigger τ is, the better results will be, but for the last four10

iterations, the smaller τ is, the better results will be. Hence, an adaptive τ can be
a better choice than a fixed τ over iterations. For instance, for these experiments we
can start with τ = 1, then decrease its value along iterations. Exploration of the best
strategy to choose τ over iterations will be studied in the future works.

6.3 Numerical tests using a two-layer Quasi Geostrophic model (QG)15

The EnKS-4DVAR algorithm has been implemented into Object Oriented Prediction
System (OOPS) (Trémolet, 2013), which is a data assimilation framework developed
by European Centre for Medium-Range Weather Forecasts (ECMWF). Numerical ex-
periments are performed by using the simple two-layer quasi-geostrophic model of
OOPS platform. The details for the model and the data assimilation system are given20

in Sects. 6.3.1 and 6.3.2 respectively. Numerical experiments are performed to solve
the weak-constraint data assimilation problem (Eq. 1) by using EnKS-4DVAR with reg-
ularization. Numerical results are presented in Sect. 6.3.3.

6.3.1 A two-layer quasi-geostrophic model

The two-layer quasi-geostrophic channel model is widely used in theoretical atmo-25

spheric studies, since it is simple enough for numerical calculations and it adequately
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captures an important aspect of large-scale dynamics in the atmosphere: in the hori-
zontal direction of the atmospheric flow, the Coriolis force caused by the rotation of the
Earth, and the pressure gradient force are in approximate balance.

The two-layer quasi-geostrophic model equations are based on the non-dimensional
quasi-geostrophic potential vorticity, whose evolution represents large scale circula-5

tions of the atmosphere. The quasi-geostrophic potential vorticity on the first (upper)
and second (lower) layers can be written respectively as

q1 = ∇2ψ1 −
f 2
0 L

2

g′H1
(ψ1 −ψ2)+βy , q2 = ∇2ψ2 −

f 2
0 L

2

g′H2
(ψ2 −ψ1)+βy +Rs, (26)

where ψ is the stream function, ∇2 is the two-dimensional Laplacian, Rs represents
orography or heating, β is the (non-dimensionalised) northward variation of the Coriolis10

parameter at the fixed latitude y , f0 is the Coriolis parameter at the southern boundary
of the domain. L is the typical length scale of the motion we wish to describe, H1 and
H2 are the depths of the two layers, g′ = g∆θ/θ is the reduced gravity where θ is the
mean potential temperature, and ∆θ is the difference in potential temperature across
the layer interface. Details of the derivation of these non-dimensional equations can be15

found in Fandry and Leslie (1984); Pedlosky (1979).
Potential vorticity in each layer is conserved and thus is described by

Diqi
Dt

= 0, i = 1,2. (27)

where Di/Dt, is the total derivative, defined by

Di
Dt

=
∂
∂t

+ui
∂
∂x

+ vi
∂
∂y

(28)20

and

ui = −
∂ψi
∂y

, vi =
∂ψi
∂x

, (29)
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are the horizontal velocity components in each layer. Therefore, the potential vorticity
at each time step is determined by using the conservation of potential vorticity given by
Eq. (27). In this process, time stepping consists of a simple first order semi-Lagrangian
advection of potential vorticity.

Given the potential vorticity at a fixed time, Eq. (26) can be solved for the stream5

function at each gridpoint and then the velocity fields obtained through Eq. (29). The
equations are solved by using periodic boundary conditions in the west–east direction
and Dirichlet boundary condition in the north–south direction. For the experiments in
this paper, we choose L = 106 m, H1 = 6000m, H2 = 4000m, f0 = 10−4 s−1, β = 1.5. For
more details on the model and its solution, we refer the reader to Fisher et al. (2011).10

The domain for the experiments is 12 000km by 6300km for both layers. The horizon-
tal discretization consists of 40×20 points, so that the east–west and the north–south
resolution is approximately 300km. The dimension of the state vector of the model is
then 1600. Note that the state vector is defined only in terms of the stream function.

6.3.2 Experimental setup15

The performance of EnKS-4DVAR with regularization is analyzed by using twin experi-
ments (Sect. 6.1).

The truth is generated from a model with layer depths of D1 = 6000m and D2 =
4000m, and the time step is set to 300s, whereas the assimilating model has layer
depths of D1 = 5500m and D2 = 4500m, and the time step is set to 3600s. These20

differences in the layer depths and the time step provide a source of model error.
For all the experiments presented here, observations of non-dimensional stream

function, vector wind and wind speed were taken from a truth of the model at 100
points randomly distributed over both levels. Observations were taken every 12 hours.
We note that the number of observations is much smaller than the dimension of the25

state vector. Observation errors were assumed to be independent from each others
and uncorrelated in time. The standard deviations (SD) were chosen to be equal to
0.4 for stream function observation error, 0.6 for vector wind and 1.2 for wind speed.
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The observation operator is the bi-linear interpolation of the model fields to horizontal
observation locations.

The background error covariance matrix (B matrix) and the model error covariances
(matrices Qk) used in these experiments correspond to vertical and horizontal corre-
lations. The vertical and horizontal structures are assumed to be separable and the5

vertical correlation function is assumed to be constant over the grid. In the horizon-
tal plane covariance matrices correspond to isotropic, homogeneous correlations of
stream function with Gaussian spatial structure obtained from a Fast Fourier Transform
approach (Dietrich and Newsam, 1997; Nowak et al., 2003). For the background covari-
ance matrix B, the SD and the horizontal correlation length scale in this experiments10

was set to 0.8 and 106 m respectively. The vertical correlation function value was taken
as 0.2. For the model error covariance matrices Qi , the SD and the horizontal corre-
lation length scale was set to 0.2 and 2×106 m respectively. The vertical correlation
function value was taken as 0.5.

The window length is set to 10 days, with two sub-windows of 5 days (k = 2). The15

ensemble size is chosen to be N = 3000.

6.3.3 Numerical results

Figure 6 shows the objective function values along iterations, when using incremen-
tal 4DVAR method. The objective function is oscillating along the iterations, therefore
incremental 4DVAR method without regularization is diverging.20

Figures 7 and 8 show the objective function values along iterations for eight different
choices of regularization parameter γ. It can be seen from these two figures that when
γ = 0, Algorithm 3 is diverging as expected (since we do not use regularization and we
only approximate the linearized subproblem using ensembles). For small values of γ
(for instance γ ≤ 10−1), the objective function is not monotonically decreasing, hence25

Algorithm 3 is still diverging even if we use the regularization. Therefore, small values
of γ can not guarantee the convergence. For large values of γ (for instance γ ≥ 10),
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we can observe the decrease on the objective function along iterations. Moreover, the
fastest decrease on the objective function is obtained for γ = 10.

In conclusion, when the regularization is used, the choice of the regularization pa-
rameter γ is crucial to ensure the convergence. For instance, for small values of γ, the
method can still diverge, and for large values of γ, the objective function decreases,5

but slowly (and many iterations may be needed to attain some predefined decrease).
Therefore the regularization parameter should be neither “very small” nor “very large”.
An adaptive γ over iterations can be a better compromise which will be explored in
future studies.

7 Conclusions10

We have proposed a stochastic solver for the incremental 4DVAR weak constraint
method. The regularization term added to the Gauss–Newton method, resulting in
a globally convergent Levenberg–Marquardt method, maintains the structure of the
linearized least squares subproblem, enabling us to use ensemble Kalman smoother
as linear solver while simultaneously controlling the convergence. We have formulated15

the EnKS-4DVAR method (Algorithm 3) and have shown that it is capable of handling
strongly nonlinear problems. We have demonstrated that the randomness of the EnKS
version used (with perturbed data) eventually limits the convergence to a minimum,
bit a sufficiently large decrease of the objective function can be achieved for success-
ful data assimilation. On the contrary, we suspect that the randomization may help to20

increase the supply of the search directions over the iterations, as opposed to deter-
ministic methods locked into one low-dimensional subspace, such as the span of a one
given ensemble.

We have numerically illustrated the new method on the Lorenz 63 model and the
two-level quasi-geostrophic model. We have analyzed the impact of the finite differ-25

ences parameter τ used to approximate the derivatives of the model and observation
operators. We have shown that for τ = 1, the iterates obtained from EnKS-4DVAR are
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equivalent to those of obtained from the standard nonlinear EnKS. Based on compu-
tational experiments, we have concluded that in the first iteration, it is better to use
the classical ensemble Kalman smoother as proposed in Evensen and van Leeuwen
(2000) (i.e., τ = 1, Algorithm 4 here), and then to decrease τ over the iterations.

For the second part of the experiments, we have shown the performance of the5

EnKS-4DVAR method with regularization on the two-level quasi-geostropic problem,
one of the standard model problems for atmospheric circulation. We have observed
that the incremental 4DVAR method is not converging for a long time window length,
and that the regularization is necessary to guarantee convergence. We have concluded
that the choice of the regularization parameter is crucial to ensure the convergence10

and different choices of this parameter can change the rate of decrease in the ob-
jective function. As a summary, an adaptive regularization parameter can be a better
compromise to achieve the approximate solution in a reasonable number of iterations.

The choice of the parameters used in our approach is of crucial importance for the
computational cost of the algorithm, for instance the number of iterations to obtain15

some desired reduction. The exploration in more detail of the best strategies to adapt
these parameters course of the iterations will be studied elsewhere.

The base method, used in the computational experiments here, is using sample co-
variance. However, there is nothing to prevent the use of more sophisticated variances
of EnKS with localization and the covariance inflation, and square root filters instead of20

EnKS with data perturbation. These issues, as well as, the performance on larger and
realistic problems, will be studied elsewhere.
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Table 1. The root mean square error given by Eq. (25) for the first six Gauss–Newton iterations
of Algorithm 3, for Lorenz 63 problem. The whole state is observed. Ensemble size is 100. The
time window length is 50 time steps. Finite differences parameter is 10−3.

Iteration 1 2 3 4 5 6

RMSE 20.16 15.37 3.73 2.53 0.09 0.09
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Table 2. Mean of the objective function from 30 runs of the EnKS-4DVAR algorithm (Algo-
rithm 3) for the Lorenz 63 problem and for different values of τ (finite differences parameter).
The whole state is observed. Ensemble size is 50. The time window length is 50 time steps.

Iter. τ = 1 τ = 10−1 τ = 10−2 τ = 10−3 τ = 10−4 τ = 10−5 τ = 10−6

1 1.02e+6 1.39e+9 3.21e+9 3.54e+9 3.58e+9 3.58e+9 3.58e+9
2 1.39e+6 5.27e+7 1.70e+8 1.93e+8 1.96e+8 1.96e+8 1.96e+8
3 1.32e+6 4.14e+6 2.99e+6 3.69e+6 3.76e+6 3.77e+6 3.77e+6
4 1.38e+6 5699 3266 4431 4581.31 4594 4598
5 1.55e+6 1299 89.22 65.69 65.4442 65.41 65.26
6 1.34e+6 830.1 17.08 6.933 6.844 6.856 6.923
7 2.05e+6 826.8 10.75 1.885 1.89082 1.8 1.721
8 1.47e+6 847.4 10.82 1.68 1.63813 1.547 1.641
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Figure 1. The Lorenz attractor, initial values x(0) = 1, y(0) = 1, and z(0) = 1, discretization time
step is dt= 0.1 time unit.

29

Figure 1. The Lorenz attractor, initial values x(0) = 1, y(0) = 1, and z(0) = 1, discretization time
step is dt = 0.1 time unit.

895

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 865–902, 2015

Hybrid Levenberg–
Marquardt and

weak-constraint
ensemble Kalman
smoother method

J. Mandel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 4 6 8

−10

0

10

Time 

x
(t

)
 

 

2 4 6 8 10

−10

0

10

20

30

Time 

y
(t

)

2 4 6 8

0

20

40

Time 

z
(t

)

truth

iteration1

iteration2

iteration3

iteration4

iteration5

Figure 2. The three components x, y , z of the truth and the first five Gauss–Newton iterations
from Lorenz 63 problem, for the first 10 time steps. The initial conditions for the truth are x(0) =
1, y(0) = 1, and z(0) = 1. Time step is dt = 0.1 time unit. Observations are the full state at each
time step. Ensemble size is 100. The time window length is 50 time steps. Finite differences
parameter is 10−3.
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Figure 3. Root square error given by Eq. (24) for the first five Gauss–Newton iterations from
Lorenz 63 problem. The problem setting is the same as in Fig. 2.
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Figure 4. Box plots of objective function values for Lorenz 63 problem. From the left to the right
and from the top to the bottom, the figures correspond to the results of the first, the second, the
third and the fourth iteration respectively. The whole state is observed. Ensemble size is 50.
The time window length is 50 time steps. In each box, the central line presents the median (red
line), the edges are the 25th and 75th percentiles (blue line), the whiskers extend to the most
extreme data points the plot algorithm considers to be not outliers (black line), and the outliers
are plotted individually (red dots).

898

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 865–902, 2015

Hybrid Levenberg–
Marquardt and

weak-constraint
ensemble Kalman
smoother method

J. Mandel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

60

70

80

90

τ=10
−2

τ=10
−3

τ=10
−4

τ=10
−5

τ=10
−6

Finite differences parameter

O
bj

ec
tiv

e 
fu

nc
tio

n

5

10

15

20

τ=10
−2

τ=10
−3

τ=10
−4

τ=10
−5

τ=10
−6

2

4

6

8

10

12

14

τ=10
−2

τ=10
−3

τ=10
−4

τ=10
−5

τ=10
−6

2

4

6

8

10

12

14

τ=10
−2

τ=10
−3

τ=10
−4

τ=10
−5

τ=10
−6

Figure 5. Same as Fig. 4, but for the fifth, the sixth, the seventh and the eighth iteration respec-
tively.

899

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/865/2015/npgd-2-865-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 865–902, 2015

Hybrid Levenberg–
Marquardt and

weak-constraint
ensemble Kalman
smoother method

J. Mandel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0 2 4 6 8 10
2

4

6

8

10

12

14
x 10

4

Iterations

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

 

 

Figure 6. Objective function values along incremental 4DVAR iterations, for two-level quasi-
geostrophic problem from Sect. 6.3.2.
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Figure 7. Objective function values along EnKS-4DVAR with regularization iterations for two-
level quasi-geostrophic problem (Sect. 6.3.2). From the left to the right and from the top to the
bottom: γ = 0, γ = 0.001, γ = 0.1, γ = 1.
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Figure 8. As Fig. 7, but for γ = 10, γ = 100, γ = 500, γ = 1000, respectively.
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